De Morgan classifying toposes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic universes and classifying toposes

The paper uses structures in Con, the author’s 2-category of sketches for arithmetic universes (AUs), to provide constructive, base-independent results for Grothendieck toposes (bounded S-toposes) as generalized spaces. The main result is to show how an extension map U : T1 → T0 can be viewed as a bundle, transforming base points (models of T0 in any elementary topos S with nno) to fibres (gene...

متن کامل

Syntactic Characterizations of Properties of Classifying Toposes

We give characterizations, for various fragments of geometric logic, of the class of theories classified by a locally connected (respectively connected and locally connected, atomic, compact, presheaf) topos, and exploit the existence of multiple sites of definition for a given topos to establish various results on quotients of theories of presheaf type.

متن کامل

Classifying Toposes for First-Order Theories

By a classifying topos for a first-order theory T, we mean a topos E such that, for any topos F , models of T in F correspond exactly to open geometric morphisms F → E . We show that not every (infinitary) first-order theory has a classifying topos in this sense, but we characterize those which do by an appropriate ‘smallness condition’, and we show that every Grothendieck topos arises as the c...

متن کامل

De Morgan Triples Revisited

In this paper we overview basic known results about the varieties generated by De Morgan triples and about the problem to find equations defining the variety generated by a concrete De Morgan triple. We also provide some alternative proofs and some new results, specially for the case of Łukasiewicz De Morgan triples.

متن کامل

Yoneda Representations of Flat Functors and Classifying Toposes

We obtain semantic characterizations, holding for any Grothendieck site (C, J), for the models of a theory classified by a topos of the form Sh(C, J) in terms of the models of a theory classified by a topos [C,Set]. These characterizations arise from an appropriate representation of flat functors into Grothendieck toposes based on an application of the Yoneda Lemma in conjunction with ideas fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2009

ISSN: 0001-8708

DOI: 10.1016/j.aim.2009.07.009